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Abstract

The optimum s-gradient method for minimizing a |
positive definite quadratic function £(x) on En
has long been known to converge for 8 >1 . For
these s the author studies the directions from
which the iterates Xy approach their 1limit, and
extends to s > 1 a theory proved by Akaike for
s =1 . It is shown that f(xk) can never converge
to its minimum value faster than linearly, except in
degenerate cases where it attains the minimum in one

step.
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1. Introduction and Summary.

To minimize a smooth real-valued function f(x) of n real vari-
ables, the optimum s-gradient method has been described by Birman (3],
Faddeev and Faddeeva [5], Khabaza [8], and others. We here consider the
model function f(x) = ixTAx, where A is & positive definite metrix.
Then each iterate xk is equal to its error. The convergence of the
method was proved long ago--see (2.14)--and the question now under study
is to find the asymptotic manner in which the iterates X, - 6, the null
vector.

For s =1 it was conjectured by Forsythe and Motzkin [7] and

proved by Akaike [1]--see (4.12)--that the iterates x, converge to 6

k
by asymptotically alternating between two directions--the "cage" of
Stiefel ,10]. Thus the convergence of f(xk) to O for s =1 is
known to be linear, and no faster than linear, for any start X, that
is not cn eigenvector. Moreover, if coordinetes are chosen so that A
is a diagonal matrix, then the two asymptotic directions have oaly two
nonzero components. Finally, any direction with only two nonzero com-
ponents is invariant under two steps of the optimum l-grsdient method.
In the present paper the author has extended most of the known
results to arbitrary s > 1 . The main result (3.8) shows that the
directions of the even iterstes X have as a limit set = continuum
R (which might be a single direction). Moreover, each direction of R
is invariant under two st2ps of the optimum s-gradient method. Let A
be a diagonal matrix. It is then shown in (5.10) that in the optimum

s-gradient process f(xk) converges to O no faster then linearly for

any initial vector Xq with at least s + 1 nonzero components.

|
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Theorem (1#.7) shows that all vectors of R have between s + 1 and 2s
nonzero coordinates, inclusive. Theorem (4.8) says that any direction
with s + 1 nonzero components is invariant under two steps of the method,
for any s . Examples are shown in Sec. 4 of directions with this invari-
ance and with as many as 2s nonzero components.

Experimental evidence from computer runs for s = 2 suggests
strongly that R 1is slways a single point, just it has been proved to
be for s =1 . The author conjectures without proof that R 1is a
single point for all s, so that X, = € in an alternating manner
completely analogous to the case with s =1 .

The author is aware that for minimizing quedratic functions f(x)
in practice, the conjugate-gradient method of Hestenes and Stiefel (see
[5]) may usually be expected to be superior to the optimum s-gradient
methods, although Khabaza [8] claims superiority for the 3-gradient
method in some cases. For nonquadratic functions f(x) the relative
merits of the methods are less clear. The purpose of the present inves-
tigation was the intellectual one of trying to understand the asymptotic
behavior of the various gredient methods for quadratic functions. The

author expects that this information may have some useful application

to the minimization of gensral smooth functions f(x) .




£ 4 e = T

——
I e

2. The Optimum s-gradient Method for Quadratic Functions.

Let f(x) be resl for all x in reel euclidean n-space En . Let
f(x) assume a minimum value for a unique x, which can be taken as 6,
the origin of En’ without loss of generality in the analysis. The
advantage of using 6 1s that the iterate X, is then also its own

error x, - 6 as a minimizing vector. We wish to analyze certain

k
asymptotic properties of a class of optimum gradient methods for finding

the minimum of f(x) .

The simplest f to asnalyze is the quadratic function
T
(2.1) £(x) = #x Ax,

where A 1is a symmetric, positive definite, nonderogatory matrix of
order n . Moreover, (2.1) represents the local behavior at 6 of
f(x) - £(6) for most sufficiently smooth functions f . The author
conjectures that the theorems proved below for a quadratic function
apply essentially also to any sufficiently smooth function f which
is locally like (2.1). In this paper only quadratic functions will be
studied. See Daniel [4] for an investigation ccmparing gredient methods
for quadratic and nonquadratic functions in Hilbert space.

In the various gradient methods one starts with an arbitrary

vector x and computes a sequence {xk] converging to 6 . We

O’
assume all arithmetic to be exact, and round-off error is not considered

in this paper.

Let denote the gradient of f at x

= grad f(xk) = Ax .

Zy k K

In the optimum l-gradient method [5], X,41 18 taken to be the unique

~ P
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point on the line Ll = {xk +Q .l\xk :-® < g <®} for which F(a) =
f‘(xk + ank) is a minimum. (The existence and uniqueness of Xiel
result from the easily proved fact that F(a) is 8 quadratic function !
of a with F"(a) >0 .) The line L1 through Xy is called the

line of steepest descent of f(x) sat X, -

2
For x € L, grad f(x) = A(xk +a Axk) = Ax, + Q@ Ax, . We there-

fore consider the 2-dimensionel plane through X\ s

= 2 ¢ - -
L2_{xk+alek+a2Axk' ®<a <., <a2<-},

and call it the 2-plane of steepest descent of f(x) at Xy %

By extension, for any integer s (1< s <n) let
S
L={xk+2aiAxk:-“<ai<° (a1l 1 )}

be the s-dimensional plane of steepest descent of f(x) at Xy Since

A 1is not derogatory, Axk, 5000 Anxk are linearly independent, provided

X is a vector whose minimum polynomial is of degree n . 1In that case

L is the whole space E_ .
n n

In the optimum s-gradient method [5] for minimizing the quedratic

function f of (2.1), the point X4 15 defined to be the unique point

y in L for which f(y) is & minimum (k =0, 1, ...) . (Again

existence and uniqueness follow from the positive definiteness of A .)
It is the optimum s-gradient methods that we shall analyze in this paper.
We now give two representations of the minimizing {ai] which are

useful in the snalysis. Actual computing aslgorithms for the optimum

» 3 s g e rar-— on . Apd .
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s-gradient method often proceed daifferently, and find «x by teking

k+l
s steps of the conjugate gradient method, starting from x, . See [5].
We concentrate on the gradients 2, = Axk .
First representation
Let
8
X411 = %k + 71Axk+ oldd b4 7SA X, -
Then the gradient of f(x) at X4 18
8
Since xk+1 minimizes f(y) for y € Ls, the vector zk+l must be
orthogonal to Ls . For this it is necessary and sufficient that 241

be orthogonal to z,, Az, ..., As'lzk + Then 7y, ..., 7, are deter-

mined by the s conditions

s
(zk, zk+1) = (zk, zk) + 71(zk, Azk) + ..+ 7s(zk, A zk) =0

s-1

s-1 s-1 s-1 s
(A Zys zk+l) = (A 2,9 zk) + 71(A Z,s Azk) + ... 4 7S(A Z,s A zk) =0 .

Here (u, v) = uTv + vTu denotes the inner product of two column vectors.
since (APz, A%2) = (z, APTYy - zT1p+qz, we may write the above equations

as

| L AN e o _ sl b A N S
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]
zkzk+ 7lzkAzk+... +/sz‘t\zk = 0
T T,2 T,s+l
zkAzk+ 7lzkAzk+"’+7szkA z, =0
(2'3) < e o o ¢ & e
T,s=1 T8 T,2s8-1
\zkA zk+7lzkAzk+"'+7szkA zkso .
As long as z,, Az, ..., As"lzk are linearly independent, the

equations (2.3) determine the minimizing 7ys +++s 7o uniquely.

Second representation
s-1

]
Let q (t) =t +p_ ¢t

of degree s, with B/ #£0 . Then

qS(A)zk = Aszk + Bs_l.l\s'lzk + eee + BoZys
and

Az g By g
(2.4) W=%Azk+?A zk+...+zk.

Comparirg (2.4) with (2.2), we see that we can write

P (A)
(205) zk+1 = m zk,

where ps(t) is the particular polynomial

7 i 14
(2.6) p(t) = t5 ¢ Sl l, .1,
5 S 78 78

Now ps(t) is a certain orthogonal polynomial. Without loss of

generality assume A +o be the diagonal matrix

. a ~: ,’,'. '.F i,, o i ‘A-:m; e
a¥s X, <. Y
G R G ,,gsz,, ¥oa :
- B Tenbiae ; e

2

+ .00 + BO denote any monic polynomial
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(2.7) A= diag(xl, 0 An) = - >
O
L -t

where 0 < Kl < A? S0 <S An are its eigenvalues (distinct because A

is not derogatory).

(2.8) Definition. 1In the coordinate system corresponding to (2.7), let

the nonzero vector 2z be ‘(Cl, S acts Ln)T . Let orthogonality of two

polynomials p(t), q(t) (relative to 2z ) be defined by

-
(p(t), a(®) = T p()a()tE =0 .

i=1
(2.9) Plefinition. Let Ps(t; z) =t°+ ... be the unique monic poly-
nomial of degree s that, relative to 2z, 1s orthogonal in the sense
of (2.8) to all polynomiels of degree < s-1 .
Note that Ps(t; z) depends only on the direction of z, and not

its megnitude. I.e., Ps(t; z) = Ps(t; az), for all real a £ O .

(2.10) Theorem. The polynomial ps(t) of (2.5), (2.6) is the ortho-

gonal polynomial Ps(t : zk) defined in (2.9).
We shall not prove (2.10). For a related proof see, for example,
p. 349 of [5). The basic reason for (2.10) is the isomorphism, well

expounded by Stiefel [11], between orthogonality of the polynomials

4 A Ao A o
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p(t), aq(t) in the sense of (2.8) and geometric orthogonality of the

vectors p(A)z, q(A)z in E, . That is,
(p(t), a(t)) = (p(A)z, q(A)z) .

Hence the conditions (2.3) asserting the orthogonality of the vector

. . 2 8-l
Zyyp = PS(A, zk) 2, / PS(O, zk) to 2,y Az, A2, ..., Az, aTe

equivalently asserting the orthogonality of the polynomial Ps(t : zk)

to the polynomisls 1, &, £, «.., t5°1 .

In summary =z is uniquely determined from Z, by the formula

k+1

P (A5 z,) .
. k
Ps(o’ zk)

(2.11) 2y =

Moreover,
P (A; z,)
(2.12) x = =2 ke x .
* k+l Psio; zks k

Relation (2.12) is the basis for a proof by Birman (3] that in the
optimum s-gradient method f(xk) converges to O linearly, or faster.
-1
To be precise, let 0 = (kn + hl) (kn - kl) . Let Ts(t) denote the
Chebyshev polynomial on [-1, 1], normalized so that mex_; <t< 1|Ts(t)| =
1 . Let
7 + kl - 2u

Qs(u) o II‘s A=A *
n 1

Then Q (0) =T (o) >1, end !Qs(t)l <1, for A St<h . It is

ECEees.
K B

L ' 3 » G < .
) PR o8 v Lo .;: . g mm. el LRSI, VN vm » - ;A W ey "ft“

td



—— — —

r——- o

known that

8 8
Ts(a) i (o +Vo!-1) ; (0 - \/oz-l) 51,

Birman's proof goes as follows:

PS(A; zk)
f(xk+l) = [ W X

Q (4)
< f(-—z—y K because Ps(t; zk) is the poly-

nomial that minimizes f(xk+l)

1

mku(A)AQ (A) x,

Al ()12 1g, )2
[q (0)12 2
(2.13)

1§ a0,

<
ECROIEE= .

1
z —=———xf .
[T, (0))° W

Hence

(2.14) /T < —1—/fo05 -

K T (o))"

proving the convergence of f(xk) to O to be linear or faster.

(2.15) Definition. For a =0, +1, +2, ..., let the moments Moy

Of z = (;l’ te ey ;n)T be defined by

S SRR



By = O, X: C? .

(2.16) Theorem. Fix s > 1 . Except for a constant factor, the ortho-

gonal polynomial P_(t; z) of (2.9) can be expressed by the determinant

Ho By ree Mg
By Mo oo B t

(2.17) Ps(t; z) = Sk E:: :

The proof is left to the reader.

In the next theorem we give an explicit representation for the ratio

f(x (f(xk) in terms of the moments of z,

ke1)/

(2.18) Theorem. Fix s>1 . Let Xy be any vector in the optimum

s-gradient method, and let Hoy be the moments defined by (2.15) for

the gradient vector zk = Axk . Then

Hai Wota, o Wga)

Ho Hyp Hy ooe My

£(Xpyp) Mgy B Hoyy Hos-1
ke s
£lx) R nt)

where M_, is the minor determinant of B_y 4in the above determinant:

10
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T T
A = =
Proof. We have ‘f(xk) xk Axk zk

-1 . :
A z =By To simplify
. T _ ' T
the notation, let z, = (Cl, I Cn) and z,., = (Ql ) eeey Cn W g
Then
x P (A5 2y)

i =W- 3 by (2.11)

)

Ps(xi; zk)

= )
("l) SM_l i

where we use the representation (2.17) for Ps(t; zk) . Then

n
6 LEL el -2 Y-
(2.19) Cf(xk+l) = zk‘"’l A zk+l = M 2 'Z [Ps(ki, Zk)] )\. ;i
-1 i=1 1
n PN, 2
1 2: s'™i? ¥ .2
= — P (k-; A ) ;_ .
M-i i s'"i k ki 1

Now Ps(t; zk) is orthogonal in the sense of (2.8) to all polynomials
of degree < s - 1 . Hence the only term of Ps(ki; zk)/)\i that con-
tributes anything nonzero to the sum (2.19) is the term (-l)SM_l/)\:.L .
Hence

)8 & 2
= fir)—-f: P (A5 2) 8Y/A.

-1 i=l

2f(xk+l)

11
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Dividing 2f(xk+l) by 2f(xk) = p_; and rearranging the columns of the

last determinant proves theorem (2.18).

(2.20) Corollary. In the notation of theorem (2.18), for s =1,

2
£(x 1) B S B

£0x) "

(2.21)

If n=2 and s =1, then

| o 2 2
Plagy) 81505 -1 - @ = Bx)
T == . 7 o, - ¢ =clx).

) (8101 85) (4 87+A080)

(2.22)

| Proof. The second expression comes from the first by using (2.15)

and (2.21), where z, = (Ql, §2)T, with some algebraic manipulation.

(2.23) Corollary. The expression (2.22) for f(xk+l)/f(xk) is unchanged,

if (4, ¢)7 is changed to (t, -8))% .

12
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The inequality (2.13) yields an upper bound for the expression in

(2.18). We may state this result in the form of the following inequality,

Valid for g8 = l, 2’ cses

Moy Moty e B
ul . l-‘-s
Ho My Bo  ere By
(2.2&) . [ ] L] L] u lx s *
Bg ror Mgy
Mgl Mg Ms+1 **° Hogo

This is essentially the inequality of Meinardus [Ba], who derived it by
the same argument for a slightly different iteration in which "x"2 is
minimized instead of f(x)

The speciel case for s =1,

-h 2

g Mo o= )
M s = +x \ +x
&1 e

(2.25)
Ho Wy

is a well-known inequality of Kantorovich; see (8) on p. 410 of [5].

It was stated by Birman (3] that the bound (2.14) is sharp, in the
sense that for each s and each given Kl’ Kn (s < 1), one can find
A and X, 80 that (2.14%) is an equality for all k . This is done by
finding a set of xi and ;i(o) so that the shifted Chebyshev polyno-
mial Qs(t) is (up to a scalar factor) identical with Ps(t;zo) and
so that IQs(ki)I =1 for each eigenvalue M, . This is known to be

possible because the Chebyshev polynomials, like cosines, are orthogonal

with respect to summation over certain points.

13
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However, Birman did not investigate the actual menner or rate of
convergence of f(xk) to 0 in the optimum s-gradient method for a

general given A and Xy He left open the question of whether the

convergence of f(xk) to O might actually be faster than linear in

certain nontrivial cases.

(0)

For s = 1 Forsythe and Motzkin [7] conjectured that if §£O)§n

#0, then ;gk) = g(“xk“), as ko®, forall i with 1<i<n.

In words, x, — 6 asymptotically in the 2-space n spanned by the

k 1,n
eigenvectors belonging to Al and Kn . The conjecture was proved by
Forsythe and Motzkin (unpublished) only for n =3 . Akaike [1] proved
the conjecture for srbitrary n . In an unpublished manuscript Arms (2]
had found a similar proof. We give a proof in (4.12) as a consequence
of our result (3.8) for the s-gradient method.

Suppose the optimum l-gradient process is performed entirely in the
two-dimensional space nl,n . Then, if xoenl,n and X, is not an
eigenvector, it is easy to prove that:

(i) Xy» Xo» X, «.. are all collinear vectors, and that
Xq) x3, xs, ... are also collinear in another direction. Furthermore,
Xppen = c2x2k and Xop4l = c2x2k-l’ for all k . Here c2 is given
by (2.22). The basic reason why these vectors are collinear is that
the gradients Zp 41 and. Z, must always be perpendiculer in any optimum
gradient method.

(ii) Moreover, for each k =0, 1, ..., f(xk+1) = c2f(xk) . This
is an immediate consequence of Corollary (2.23). Hence f(xk) ~ 0 in

a strictly linear fashion, like the k-th term of a convergent geometric

series, even though the vectors X, altern~te between two fixed directions.

|
“ 14
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It is a consequence of the Forsythe-Motzkin-Arms-Akaike result on

the manner of convergence of x, to 6 in En for s =1 that the

k
iteration behaves asymptotically, as k = ®, as though it were entirely

in the two-space Mot The vectors Xy behave ultimately as though
)
they had resulted from an iteration started with some xg in "l =k
)

In particular, we find that f(xk) “ 0 1linearly, in the sense that

lim f(xk+l) 2
k= f xk

x;) :

*
0

Till now, the asymptotic nature of the optimum s-gradient method

However, the vector x is an extremely complex function of x

0"

has not been descrived for s > 1 . This problem, posed on p. 314 of

Forsythe [6], is studied in the next section.

15
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3. Asymptotic Behavior of the s-gradient Method.

We are still assuming A to have distinct positive eigenvalues
A <A< ...<A . Fixany s with 1<s . Motivated by (2.11)
and by Akaike's approach [1] for s = 1, we shall consider the trens-

formation
(3.1) w' = Ps(A; w) w.

Here w £ 6 and Ps(t; w) = t% + ... is the orthogonal polynomial

defined in (2.9). Let

P lip s
[lw]2 12

(3.2) o(w)

b

where HuH denotes the euclidean length of u .

Similarly, if w' #6, let w" = P (A; w') w', so that

e

et

o(w') =

The following theorem is of basic importance to our analysis of the

asymptotic behavior of the s-gradient method.

(3.3) Theorem. Let V be the angle between w and w" . For eny w
such that w" # 6, we have
2
o |12 2, el el s
Y\w) = = s S =Qw'),
ll® Ihel® = el
16
J*—-mt
! e P
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and there is equality if and only if w" = cw for some scalar ¢ > O .

Proof. By the Cauchy-Schwarz inequality and the definition of WV,

(3.4) w2 = cosulll® 12 < Il lw)1Z,

with equality if and only if w =cw", for c #£0 .
Now

Hw'||2 - ||PS(A; w) w||2 - wTPS(A; w') PS(A; w) W

wT[Ps(A; w)]2 w - wTPq(A; w') PS(A; W) W

n

wTPS(A; w) {PS(A; W) - PS(A; w')} w

prs (A; w) D(A) w

= 0,

by (2.3), because D(t) is a polynomial of degree at most s - 1,

since the leading terms t° cancel. Hence ||w'||2 = wTw » Wwhence
(5.5) el = (w2
Combining (3.4) with (3.5), we have
Il = cos®wil® 1% < M fw"1?,

with equality if and only if w" =cw . That ¢ >0 follows from the

fact that wow" = ||w'||2 > 0 . This proves theorem (3.3).

17
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(3.6) Definition. Fix s with 1 <s<n-1. Fixa euclidean
coordinate system in E_ so A takes the form (2.7). Let Z be the
unit sphere in En . Define ZI*C I to consist of all unit vectors y

with at least s + 1 nonzero components. We define a transformation

r: I* = =¥, as follows: For each y in Z¥, 1let y' =Ty = w/|wll,
*
where w = PS(A; y) y . (That w #6 and y' € Z are proved in

theorem (5.1).)

(3.7) Definition. By a continuum we mean a closed connected set in En’

with the understanding that a single point is a continuum.

(3.8) Theorem. Fix s with 1<s<n-1. Let Yo =('q](_o), cvey M)

xgo))'r

* .
be any vector in Z with ngo) £0 (i=1 ..., n) . For k=0, 1, c0sy
define y,,, =Ty, where T was defined in (3.6). Then the set of

limit points of the sequence [yek (B =0, b 25 .6l of normalized

*
gradients is a continuum R C Z . Moreover, for any point r in R,

we have r = °r = T(Tr) .

Proof. Let Vo =Yg -

where Ps(t; y) was defined in (2.9). It is easily shown that e =

wk/”wk”’ for all k . Since n > s+ 1 components of W, are nonzero,

it follows from theorem (5.1) that at least s + 1 components of Wi

are nonzero for k=1, 2, ... . Hence no W, = e .

Let v, = (c.)](_k), ceey w(k))T

X . By theorem (3.3),

cp(wo) _<_(p(wl) AN S_cp(wk) SN

18
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But for each k the s zeros of Ps(t; wk) lie in the interval

(kl, An) . Hence |P8(t; wk)| < ()\n - Al)s, for A <t< A, and so

I

2 2
"wk"'l” “PB (A; wk) “

ow,) = =
| L ||wk||2 ||‘~'k||2
l
L r, 05 w1 {01
i (k)42
( ]
121 i

5

< (A -N)°, forall k.
As a monotone bounded sequence, {cp(wk)] has a limit L . Hence
(3.9) q:(wk+1) - tp(wk) -0 (as k=),

But, by theorem (3.3),

| O T
8 Pwy, ) - ow) = = 5
Mgal Tl
(3.10)
- I, I
) [1 - cos 'k],
[ o |
l where ¥, is the angle between w, and w, . . Then, by (3.9),
] cosztk"' 1, and vk"O, as k—=® ., (Since c >0 in (3.3), vk $n)
Now consider the set Y of unit vectors {y2k tk=0,1,2 ...}.
!] As an infinite subset of the compact unit sphere Z, {yEk} has limit

points; let R be Lhe set of all limit points of Y . Since Vk - 0

19
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as k = ®, we have | <=0, as k =® . Then, as Ostrowski

¥oreo = ¥ox
shows on p. 203 of (9], the set R must be a continuum in the sense of

(3.7).
Let r be any point of R . Then there is a subsequence [yak }
i
converging to r . Since “y -y H = 0, we have also that
2ki+2 2ki
r . But T is a continuous transformation. Hence

— T2 -3
Yok e Yok,
1

T2y2k - Ter’ and T°r =r . Since Tor = r, we see from theorem (5.1)

i

* *

that r € Z . Hence RS £ ., This completes the proof of theorem (3.8).
The author has programmed a number of test cases with s =2, ¢to

investigate the nature of the set R . 1In every case, R appeared to

be a single point. The author conjectures that R 1is always a single

point in theorem (3.8). So far, this has been proved only for s = 1,

and we give the proof in (4.12).
The following theorem shows one way in which one might be able to

prove that R consists always of a single point.

(3.11) Theorem. Suppose in the proof of theorem (3.8) that w(wk)

were to converge to L so rapidly that, for some & < 1.

(3.12) C <o, ) - o(w) <olo(w) - olw _,)], for all k .

Then R would consist of a single point.

Proof. If (3.12) held, then the following infinite series would be

convergent:
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(3.13) Zl:[qa(wkﬂ) - o)) < -
es is seen from (3.12), by the ratio test. It is shown in (3.10) thst

(3.14) [p(w, ) - olw) 1 ~ sin v, |, as k=@,

where *k is the angle between the vectors Wy and Wi Then, from

(3.13) and (3.14), we would have

(3.15) LIl <=

Now, let Y = wk/llwkll be the w.it vector in the direction of LA It

would follow from (3.15) that

Z “y2k+2 = y2k“ < Q’

=

whence
[- -}

(3.16) ) TSy e
K0 2k+2 2k

would be an absolutely convergent series of vectors. Sirnce

k-1

Yok = hgo (Yomo = Yon) * Yoo

we see that the sequence {ka} would then have one limit point. This

proves the theorem (3.11).
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However, the author sees no way to prove (3.12) nor the conjecture.
The following theorem proves that, whether R has one point or an

infinite number, f(xk) = 0 no faster then linearly.

(3.17) Theorem. Fix s with 1<s<n-1. Given any A in the

form (2.7). Let Xy = (g{o), 31 gr(lo))T be any vector in E = with

m nonzero components. Then in the optimum s-gradient method f(xk)

converges to O in the following ways:

(i) If m<s, then x. =86, f(xl) = 0, and the iteration termi-

1

nate; in one step.

(i1) If s+ 1<m, then the convergence of f(xk) to 0 is

asymptotically linear, in the sense that there exist coristants cl, 02

depending on Xy with

£ (pp40)
(3.18) 0< e Sy <<l for all k .
2k

Proof. We may ignore any zero components of Xy 8s they remain
zero throughout the iteration. We are thus minimizing f£(x) in Em .
Proof of (i): If m < s, then the subspace Ls defined in Sec. 2

is E . Hence x; =6 and f(xl) = 0, the minimum of f(x) in E, -

1
Proof of (ii): That

F (o)

<e. <1
fixek) 2

follows from the chain of inequalities (2.13). We have to prove the

inequalities involving ¢y -

22
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Given X, with at least s + 1 nonzero components. By theorem

(5.1) all other vectors xk have at least & + 1 nonzero components,

s0 that no X, = 6 . By theorem (3.8), the normalized gradient vectors

Yok have as a limit set a continuum R . For each point r in R, we

have T‘?r = r . Suppose a position vector x were such that r = Ax/HAxH €R.
That is, x would be in the direction of Alr . Let x" be the result

of two steps of the optimum s-gradient method applied to x . Since

2 ; . .
T™r =r, we see that x" would be in the same direction as x . Hence

(3.19) x" = yx and so f(x") = 72f(x),

for some 7 with 0< 9y =y(r) <1.

I.e., Yor each point r of R there is a positive real number
y(r) such that whenever the gradient of a vector x lies in the direction
of r, then (3.19) holds.

Let C be the minimum of 7y(r) for r € R. Since R is compact,

the minimum is assumed and C > O . Hence
& . "
2 : <
(3.20) c<C < )

for all x such that Ax/||Ax|| € R .
Now the ratio f(x")/f(x) is a continuous function of x . Let

N(R) € £ be such a neighborhood of R that

2 f(x"
(3.21) 507 € =

23



for all x with Ax/HAxH in N(R) . Consider the sequence {x2k] .

Let z, = Ax, , and let y, = 22k/||z2k” . By theorem (3.8), the

{y2k} have R as a limit set. Hence there is a K such that for

k>K all y lie in N(R) . By (3.21) then for k > XK we have
p 2k =

)

£x 00

= fx2k

2

Letting ¢, = &Cz completes the proof of the theorem.
Actually we could have taken ¢ = C2 - €, forany € > 0.

(3.22) Corollary. With the hypotheses of theorem (3.17), there exist

constants dl’ d2 with
Flxyy,)
O<d1£—f(§)—3d2<l, for all k .

Proof. The corollary follows from theorem (3.17), the inequalities

(2.13), and the fact that f(x ) v0, as k -~ &,
k b

(3.23) Theorem . Fix s >1 . Let x, be any vector such that x,

is parallel to x, in the optimum s-gradient method. In other words,

zo/llzll is in the set F(A) of (4.5), where z, = Ax, . Then
£x, . .)
k1 2 .
(5.2""’) W=C (k=\, l’ 2, esq )’

where c2 depends on A and on X

0
Remark. The import of this theorem is that, although the X,

P2
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b3

alternate between two fixed directions, as k = ®, the ratio (3.24) is

corstant for all k, and does not alternate.

Proof of (3.25). We first note from Corollary (2.23) taat the
theorem is true for s = 1, and that (2.22) gives a formula for ¢? 1n
terms of the two nonzero components §l, §2 of 2y -

For any fixed s > 1, let n be the 2-space zpanned by Xq and

x, . Let fn(x) be the restriction of f(x) = QxTAx to the subspace

1
n . Then the vectors Xgr Xq» X5y e.. cED be shown by a geometrical
argument to be the successive iterates of the optimum l-gradient method
for finding the minimum of fn(x) in =, starting with x, . Then

(3.24) for s =1 states that

fﬂ(xk+l) 2

ERCRRR

n

for some constant c2 depending on the eigenvalues of f‘ﬂ . Since
fﬂ(x) = f(x) in =, this proves the theorem for s .

Presumably theorem (3.23) could somehow be proved from theorem
(2.18), just as the case s =1 follows from (2.22).

Corollary (3.22) could also be proved from theorem (3.23).
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4, Nature of the Asymptotic Directions.

We should like to chsracterize as well as we can the possible limiting
vectors r € R of the (normalized) gradient vectors Yo of theorem

(3.8). Since °r = r, for r in R, we have

(4.1) er PS(A; Tr) PS(A; r)

QQS (A) r,

where ¢ > O 1is a constant and Q2s(t) is the product of the two poly-
nomials Ps(t; Tr) and Ps(t; r) . Letting r = (pl, ceny pn)T, we

have
(4.2) cp; = QES(Ki) Py (i =2, «ooy n) .

Recall from p. 4k of [12] that P_(t; Tr) = t3+ ... and P (t; 1)
= ts + ... are polynomisls of degree s, each with s distinct real
zeros in the open interval (kl, Xn) . Hence Q2s(t) = tes + ... is a
polynomial of degree 2s with 2s real zeros in the interval (kl, Xn),

counting double zeros twice, if any. Now c¢ >0 in (4.2), which implies

that for each i

(4.3) Qes(ki) =c>0 or p; =0 (i=1, «eop n) .

. . : \
Since Q2s(t) vanishes for some t in (kl, Xn,, the equation Q2s(t)
=c¢c>0 can have 2, 3, 4, ..., or 2s distinct real roots, which we

call g (=1, ..., m), and number so that
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< LI ] .
o - S < M

(Here we count a multiple root of st(t) = ¢ only once.) Thus
QQS(HJ) =c (=1, «vcy m) .
By (4.3) each \; for which p, £ 0 is one of the by

(4.4) Definition. Given X, - Let R be the set of limiting points
of the normalized gradients {y2k :k=0,1, ...} of the optimum
s-gradient method starting from x, . For any vector r = (pl, -G pn)T

in R, let S be the set of A, for which p, #£ 0 . Any such set is

called an asymptotic spectrum of the optimum s-gradient method for the

given x Any r in R 1is called an asymptotic gradient vector of

O L]
tne same iteration.

Note that R depends on A and Xqs and we occacionally write

R(xo, A) to make the dependence explicit. Note that S 1is a property

of r only, and only indirectly of Xy -

(4.5) Definition. For a given A, we define the invariant set F(A)
of the optimum s-gradient method to be the set of unit vectors r such
that T2r =T .

We have shown in theorem (3.8) that, for any X0 R(xo, A) € F(A) .

It is never true that R(xo, A) = F(A) . However, it is true that

F(A) = U R(XO; A) .

X, € En
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For, if r € F(A), then oy = r, so that r = R(r, A) .

(4.6) Theorem. Given Xq = (gio), coey gﬁo))T with §§O) £0 (1=1,

..., n) . Assume s<n . Then both eigenvalues kl and Xn belon

to all asymptotic spectra S of the optimum s-gradient method starting

with Xq
Proof. Assume that kq (g < n) 1is the largest eigenvalue in the

asymptotic spectrum S corresponding to an asymptotic vector r of

R(xo, A) . The zeros of each Ps(t; zk) (k =0, 1, ... ) 1lie in the

open interval (kl, kn) . Hence PS(Xn; zk) £0 for all k . Hence

(2k)

N are the components of

nﬁek) #0 for all k, where the 1
y2k = ZEK/HZERH e

Let T be the largest zero of Ps(t; Tr) Ps(t; r) . Since the
zeros of both Ps(t; Tr) and Ps(t; r) 1lie in the open interval (A, kq),
we see that Ps(t; Tr) Ps(t; r)», as tA, for t>1 . Hence

e s\ -
c” = Ps(kq, Tr) Ps(kq, r) < Ps(An, Tr) Ps(kn, r) .

But then, by continuity,
Ps(xq; 22k+1) Ps(Kq; z2k) S-c’Ps(}"n; 22k+l) Ps(An; zek)

for some © <1 and all k > K . Since all nﬁek) # 0, and since

néekj) - p #£0, for a certain subsequence kj’ this means that

(2k)

|n£2k3h —~®, ggs j=® ., This is impossible, since all ¥y lie

P DB
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on the unit sphere. Hence q =n, and Kn is in the asymptotic spectrum

S L[]
The proof that Kl is in S 1is analogous.
(4.7) Theorem. Given X, Wwith ggo) £0 (i=1, ..., n); assume that

s>n . Let m ble the number of eigenvalues in any asymptotic spectrum

S of the optimum s-gradient method. Then

Proof. Let r € R be an asymptotic gradient vector corresponding
to a given S . As shown after (4.3), the asymptotic spectrum S 1is a
subset of the set of t for which Ps(t; Tr) Ps(t; r) =c, and the
number of such t 1is between 2 and 2s .

However, if m < s, one step of the optimum gradient method would
carry r into 6, and so r could not belong to R . Hence

s+1<m<@2s.

(+.8) Theorem. Suppose s<n . Let x, = (§£O), oy §£O))T be any
(0)

h Then
i SLOAY

vector in En with exactly s + 1 nonzero components §

are all collinear vectors. That is, the normalized

Xo, X2, Xu, 00

gradient vecior y, = AxO/HAxO“ is in the invariant set F(A) of (4.5).

Proof. Let z. = AxO . It will suffice to prove that Zy = oo

0
for some positive constant o - Without loss of generality we may
assume that n = s + 1, since the components for which E(O) = 0 remain

i
zero.
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By (2.2)

s
. = + + e e e
(4.9) z z 71AzO + 7SA Zo

1 0

and 7ys v 7y B8re 80 chosen that 2z

1
As.lzO . Because s + 1 components of =2

2o Azo,

0
vy As-lzol forms a basis for the subspace of Es+

is orthogonal to 2 Azo, 0o &%

o @&re nonzero, the s vectors
e 25"z are linearly independent. Hence the set {zo, Az,

orthogonal to z. .

1 1

Next, 22 is formed &3 e 1linear combination of 29 Azl, coar

. Since =z is

Asz which is orthogonal to 2z , Az As-lz o

1 ). 1 1

orthogonal to Zy it is expressible in terms of the basis CIVERERY
s-1
A zg ¢

s-1
* V. = + LN + .
(4.10) %y = CoZo t CiAZy + c 1A Tz

We shall prove that cl = 02 Shoon & cs-l =0 .

Take the inner product of (4.10) with Az,

T T 2
zl AzO +1 ANz A el EE R G

T
(4.11) z. Az, = 121 0

1 -4 = €5

But =z, Az, = Z5 Azl = O because Z5 is orthogonal to Az1 ., And

g a5 - leAs'le =0, because z, is orthogonal to
s=1

2 L, s : :
Azgyy A"zgy ooy ATz . And oz TATzZg £ 0, since otherwise by (4.11)

z, would be 6 . It then follows from (4.11) that ¢,y =0.

N
x>
N
"
N
b3
N
1}
i}
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Next, taking the inner product of (4.10) with Azzl and using the

same argument and the fact that €1 = 0, we show that Cop © o .

After taking the inner product ot (4.10) with Az,, Aezl, 0 As'lzl,

) Elece =, Sle) s O . Then, from (4.10),

> 0 follows from the proof of (3.3) . This com-

we will have proved that ¢

z That

s = %0 ¢,
| pletes the proof of theorem (4.8).
S Theorem (4.8) implies that any s + 1 eigenvalues of A can be in

the asymptotic spectrum for some start x, . Moreover, any vector r

J with exactly s + 1 nonzero components can be an asymptotic gradient
vector of an iteration. This extends to s > 2 the known fact for the
! ordinary optimum l-gradient method in 2 dimensions that any initial
! gradient direction is repeated al every other step of the iteration.
See the end of Sec. 2 above, or p. 214 of Ostrowski [9].
J That for all s the period of the iteration in theorems (3.8) and
(4.8) is 2, and not higher than 2, was a surprising fact to the suthor.
However, the experiments of Khabaza [8] for s =3 suggest the period 2.
For s =1 we have s+ 1 =2s =2, and then by theorem (4.7) all
the vectors invariant under two steps of the optimum l-gradient method

are of the type covered in theorem (4.8). From this we can now show for

s =1 that the limiting set R of theorem (3.8) is actually a single
point. The following is a modification of Akaike's proof in [1] of the
Forsythe-Motzkin conjecture [7].

(4.12) Theorem (Akaike). Let s =1 . Let S (nio), oL o nﬁo))T

Lo (0) .
be any vector in Z  with 5 £0 (i= 1, ..., n) . Then the sequence

it
}i {y2k ¢t k=0, 1, ...] of normalized gradients converges to a single point
r whose spectrum is {kl, Kn} . Moreover, T2r Sk

[
.
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Proof. By theorem (3.8) the set of unit vectors [y2k tk=0,1, ... }

has a continuum R as a limit set. By theorem (4.7), for any r € R the
corresponding spectrum S of r has only 2 eigenvalues in it (for s +1

=25 =2 ). Now by theorem (4.6) the two eigenvalues in S must be N
and A . let r be any point of R; let r = (pl, Oy +e0y O, pn)T,

b 2.2 Sy L2 2
with p; +p =1 . Then Pl(t, r) =t - u, where u = Klpl + Anpn .
T
Hence P (A; r) r = ((A - w)e;, 0y «evy Oy (n - we ) .

By the proof of theorem (3.8),

L= 2" o) = o() = |l (45 0 o, since ||r[|?

2 2 2 2
(N =)o) + (A - W) 0,

n
[

or
2 2 2
. - -)\ »
(+.15) L=(h -M)" ey e,
Now L 1is a number determined by the iteration, Xl and Kn are
given eigenvalues, and pf + pi =1 . Hence the pair pi, pi are

dz termined by (4.13), up to an interchange at most. Hence the set R
can have at most eight vectors in it, if all permutations of signs are
considered. But then, since R 1is a continuum, it must consist of a
single point, which we call r . Then Yo - r, as k=%, This
proves theorem (4.12).

Actually, if r = (pl, K pn)T, then Tr = (pn, 2ol -pl)T,
where all components py = O for 1<i<n. Then r=1lim Yox and
Tr = lim Yoe1? 88 k =% , So, the directions of the gradient vectors

z alternately approach the directions of r &and Tr, as k —® ,

k
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The reason we cannot extend our proof of theorem (4.12) to s > 1
is that the equation analogous to (4.13) involves between s + 1 and
2s unknown components of r, and we do not see how to limit r to a
finite number of vectors. Even for s = 2, theorem (4.8) shows that
all vectors r with 3 nonzero components are invariant under T2
Prescribing the vector r to have unit length and prescribing the value
of L reduce the number of free parameters in r to 1 . But, so far
as the author can see, there remain ! possible limiting vectors r
in R .

Moreover, for an even number s > 1, there are asymptotic spectra
containing more than s + 1 eigenvelues, as will now be demonstrated.
We shall consider only spectra with symmetry about a midpoint. We dc
not know whether there are asymptotic spectra with more than s + 1
eigenvalues without such a symmetry.

We shall first examine possible asymptotic spectra with an even
number 2q of eigenvalues., Let the eigenvalues in S Dbe a - uq,
a - uq_l, ey 8 - By, 8 + Biy evey 8 + pq_l, a + uq, where 0 < a - uq
and 0O < by [ e < uq . Let us consider unit vectors r with symmetric
components pq, vees Pyy Py ey pq, corresponding to the respective
points of the spectrum.

Because of the symmetry about the point t = a, the orthogonal
polynomials ng(t; r), P2k+l(t; r) associated with S and the {p?]

satisfy the conditions

(4.14) P, (t; 1) =g ({t - a)?),

33



s ALen

where is a monic polynomial of degree k;

By
(5.15) P (65 1) = (6 - 8) b ((t - a)®),

where hk is a monic polynomial of degree V .
By symmetry, the even and odd polynomials Pk(t; r) are automatically

orthogonal. By (4.14) orthogonality of the Pey(t; r) among themselves

can be expressed in the form

2, 2

(4.16) f_l gj(uf) g, (wy) o] =0 (3, k =0, 1, veus J £ )
1=

Thus the gk(t) are themselves orthogonal polynomials over the set

2 & . 2 2 R
BYs eoer By with the weight factors pl, ..., Py * Moreover, gk(t) =

(-l)k gk(82 - t) are monic orthogonal polynomials over the transformed

set § = [a2 - ui, S ioxery 82 - ui} with the same weights pi, ceny pi .
- a2 2
Note that lgk(0)| = |P2k(0; r)| and that \gk(a - pi)l = |P2k(a t By r)l

for i=1, ..., ¢ . Hence |ék(t)/ék(0)| has the same constant vslue
over the set S that |P2k(t; r)/Pék(O; r)| has over the set S .

By (4.15) the orthogonality of the P4 @mong themselves can be

expressed as
2 2, 2 2 .
i=1

Thus the ﬁk(t) = (-l)khk(82 - t) are monic orthogonal polynomials over

the set 8 = {52 S ue, o3 oy 280 ui} with the different weights ui pi, - 356

q
2 2 . 2
by Pq + Note that lhk(0)| = |hk(a ) = |P2k+l(0; r)|/a, and that

3k

|
|
]
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Thus -onstancy ={ |P (t; r)| over S does not imply constancy of

2k+1
Iﬁk(t)l over 8 . The even and odd polynomials transform differently.
By means of these orthogonal polynomials ék we can reduce the
problem of the invariance of the r under two steps of the optimum
2s-gradient method over S to the problem of the invariance of an
optimum s-gradient method over 8 1in a space of half the dimension.

To be precise, the above relations imply the following result,

which we do not prove.

(4.18) Theorem. If s is even and s+ 1 < 29 < 2s, then the vector

T N N a o N .
r = (pq, seey Pl Ppy e pq) (with no p, =0 ) 1is in the invariant

set (4.5) for the optimum s-gradient method for the diagonal matrix of

2q nonzero elements

diag(a - Bgr seer 8 By, @ t By eeey 8 ¥ uq)

~

if and only if the vector T = (pl, a5y pq)T (with no Py = 0) is

in the invariant set for the optimum (s/2)-gradient method for the

diagonal matrix of q nonzero elements

. 2 2 2 2
diag(a® + Wiy +oep 8+ pq) .

Moreover, when iterations exist with these invariance properties, if

zo = t/lrl and 2 =/, then Nzl = 2 ) for x =0, 1,2, ...,
where z, and %k are the gradient vectors of the respective iterations.
53
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We do not know a comparable theorem for odd integers s .

As an application of theorem (4.18), we can show that for any s
of the form s =2° (p =0, 1, 2, ...). Lhere exist vectors with 2s
nonzero components that are i{u the invariant set of some optimum s-gradi-

ent method. For p = O this is theorem (4.12), and is true for any

2 2)

diagonal matrix of two positive elements diag(a2 + ui, a + (A and

any vector r = (pl, p2)T . Application of the first sentence of (4.18)
2
leads to s = 2 with any matrix of form diag(b + vi, b2 + vg, b2 + vg,
2 2 2

2 2 2 2
b, + vu) where b~ + VI =a -, b ¥ Vo =8 - by, b+ vy = @ + by

2 2 . T
b + v, = @ + Hos and corresponding vector c(pa, Pys Py 92) . Another

application of (4.18) leads to s =4 with the matrix

l’ ..., b + vh)

diag(b - Vs eees D=V, bV
and corresponding vector c'(pz, Pys Pys Pos Ppr Py Py 92)T . It
is clear that the process may be continued to s = 2P for any p .

Note from theorem (%+.7) that 2s is the maximal nimber of nonzero
components in any vector in the invariant set for an optimum s-gradient
method. Our above example illustrates the maximal case.

We next consider symmetric asymptotic specira with an odd number
2q + 1 of eigenvalues & - p , ..., 8 = Bys 8, @ + Wys «oey @ + pq ard

q
a corresponding symmetric vector

(e e e B ets o
\.q 1] l’ O’ l) ) q ’

2
invariant under T~ . Then again the orthogonzl polynomials take the

36
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forms (4.14) and (4.15). The odd polynomials cre still defined by the

condition (4.17), but the condition (4.16) must be replaced by

(k.19) 2 fi sj(u g, (w ) o + gj(O) g, (0) Of =0

(3, k=0, 1, «.e5 § #K)
The analog of theorem (4.18) is now stated, but not proved:

(4.20) Theorem. If s is evenand s + 1<2q+ 1< 2s, then the

T . k-
vector r = (pq, vevs Py Py Pyr vee pq) (with no p; =0 ) is in

the invariant set (4.5) for the optimum s-gradient method for the diag-

onal natrix of 2q + 1 nonzero elements

i - L) - + o e 0 +
diag(s - woy ~vvy 8 < Bpy 8, 8 F By, een, @ uq)

I
o
~r

if and only if the vector T = (pO//E; PYs +res pq)T (with no 0y

is in the invariant set for the optimum (s/2)-gradient method for the

diagonal matrix of q+ 1 elements

diag(ae, i ui, LA S pi)

Moreover, when iterations exist with these invariance properties, if

2o = t/lxgl and 3, = t/3l, then llz = Iz for k-0, 1, 2 ...,

where 1z, and %k are the gradient vectors of the respective iterations.

If s is odd, then the set of 2q + 1 eigenvalues {a - uq’ ceey

a - by a, a + ul, ciey a t uq] can never be the asymptotic spectrum

f an optimum s-gradient iteration.

£
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The first two sentences are strict analogs of theorem (4.18). The

third is true because P = 0 for all k .

2k+1 (23 T)
The signs of the p, are of no importance in theorems (4.18) and
(4.20), end any p. could be left alone or replaced by =-p., independently

’ i i

at any place it is mentioned.
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5. Singular and Derogatory Quadratic Forms; Zero Components.

Two restrictions placed on A above are really irrelevant--that A
be regular and nonderogatory. If A is singular, then for some p > 1,

we have A, = ... =N =0< A < ++. <N , Then it follows from
1 P ptl n

(2.12) that

+
ggk 1) . g?‘), for 1<i<p;k=0,1, 2, ...

(k)

while all components gi -0, as k—=®, for p+1<i<n. On
n ~
)} N BT . Thus f(x) s
i=p+l
minimized for all vectors in the subspace N where §l D00 e )

n
the other hand f(x) = Ax = )} N 5? =
i=1

and the gradient methods proceed from x_  to the closest point x

0

and all gradients 2z, 1located in the ortho-

of N, with ell X, = X K

[- ]
gonal complemant of N .
If A 1is derogatory, it has multiple eigenvalues but a complete

set of eigenvectors (because A is symmetric). Suppose, for example,

‘ = = A g
that 0 < Kl K2 Kr <Ay < < Kn’ and suppose that
- (¢(0) (0) ,(0) (0)yT
Xg = (E)77) eeny BT, B0y veey B0)T

Now the orthogonal basis of eigenvectors belonging to Xl, 317 hr is

not uniquely defined. Our preceding analysis required at various places

(e.g., in the proof of (4.8) that the N, Dbe distinct for each nonzero

(o) (0)

i but zero components §i were ignored. If any of

component €

géo), oHag gio) are nonzero, make an orthogonal transformation of the

eigenvector basis so that X, takes the form
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(0)

‘.l’ o’ gﬁl’ l.., g

e,

xg = (6,75 % Lo+ ohT

Then drop the new zero components §2, oKk §r entirely, and effectively
reduce A to a nonderogatory matrix A of order n-r + 1,

Thus, in effect, only the set and number of distinct nonzero eigen-
values of A have & real relevance to the gradient methods for quadratic

functions ﬁxTAx ;

Moreover, zero components of any xk should be ignored, and the

(k)

i that occurs

order of A reduced by unity for each zero component §
at any stage of the iteration.
If fewer then s + 1 components of any X, are nonzero, then

Xppy = 6 and the iteration terminates at once. Hence we have always

insisted that at least s + 1 components of X, be nonzero. Even so,

one may ask, might not enough Ps(ki; Zh) be "accidentally" zero, so

that for some later Xy fewer than s + 1 components are nonzero?

The answer is negative, as the following theorem shows:

(5.1) Theorem. Assume s + 1< n . Assume §§k) £0 for i=1, ...

n . Then at least s + 1 components §§k+l) £0 .

- (k+1)

Proof. By (2.12), &, = PS(Xi; Zk) g(x), up to a multiplicative

i

constant that does not matter, where Ps(t; zk) is the orthogonal poly-
2

nomial of degree s over the set {Kl, east 3 Kn} with weights [gik)] :

We shall prove that there exist s + 1 eigenvalues out of the Ki :

I / I
(5.2) M <A< <M,

Lo
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such that Ps(k;; zk) Ps(x;+l; zk) <0 for i=1, ..., s . A fortiori,
Ps(Ki; zk) $0 for i=1, 2, ..., s +1, and the theorem will have
been proved.

If the above sign-alternation property is false, then let q < s
be the largest integer such that we can find [K;] with

/

(5.3) Ps(xi; zk) Ps(k;+l; zk) <0 for i =1, ..., q~1.

(Clearly some q > 2 exists, or else Ps(hi; zk) would always be cf
one sign and hence Ps could not be orthogonal to Pb =1 . Then

pick O TRRERY uq-l with

K’<p1<>\'<p2<...<>\.l

/
1 2 e LR

q!
so that, if Q(t) = (t - “1) see (= uq_l), then Ps(xi; zk) Q(xi) >0

for all i =1, ..., n . (We omit details of the construction.) Then

i=1

n 2
: _ ; (k)
(P(t5 2,0, @(t)) = ¥ P.(A; z) @A) [ci > 0,
so that PS and Q are not orthogonal. But, since @Q 1is of degree

q-1<s-1, Ps must be orthogonal to Q . This contradiction

completes the proof of theorem (5.1).
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